
 

VII. Astronomy Revolution: 

A. A breakthrough in our understanding of the Solar System occurred when the Polish     
astronomer Nicolaus Copernicus advance his Sun-centered ("heliocentric") theory of 
planetary motions. 

1. His idea had been considered earlier, but it did not have a lasting effect, and  
surviving records are fragmentary. 

               a.  Aristarchus, in particular, had suggested a heliocentric model around 250 B.C.  
               b.  We know about this due to Archimedes' work, The Sand Reckoner.  Any 
                original manuscript burned during the great fire in the library of Alexandria. 

2. With the Sun at the center, and planets orbiting it, retrograde motion could be 
 explained  

                     
  a.  Mars, for example, normally appear to move from west to east among the stars. 
  b.  However, Mars takes longer to orbit the Sun than Earth does. 
  c.  Earth therefore sometimes overtakes Mars in it's orbit, and the perspective 
     changes. 
  d.  During such times, Mars appears to move backwards (east to west) among the  
     stars. 

           



 
           e.  Similarly, Mercury and Venus sometimes undergo retrograde motion. 
          3.  Copernicus was a conservative innovator.  He still used perfect circles, and he  
            did not seek a physical basis; his intellectual outlook was closer to that of Ptolemy   
.            than of Newton. 

a. To make the predicted and observed positions of planets agree, he needed to 
have epicycles superposed on the circles; moreover, the circles were not 
exactly centered on the Sun. 

b. The resulting quantitative predictions were not clearly superior to those of 
               the Ptolemaic system. 

 c.   The appeal of the heliocentric theory was largely of a philosophical nature. 
    4.  Copernicus was supported by the Catholic Church and dedicated his work to the 
         Pope. 

a. He was aware of some of the radical implications of his model, developed 
              around 1510. 

b. A disciple of his, Georg Rheicus, was responsible for getting his main book 
              published (De Revolutionibus ---"Concerning the Revolutions" 1543). A copy 
              was handed to deathbed. 

c. An unsigned preface by Andreas Osiander, a leading theologian and Lutheran 
   preacher, incorrectly implies that Copernicus disavowed any true belief in the 
   physical reality of his hypothesis. 

B. In 1609-1610, Galileo Galilei was the first to use a telescope for systematic  
   astronomical observations. 

1.  His most important discovery of relevance to the heliocentric theory was threat 
            Venus goes through a complete set of phases, just like the Moon. 

2.  If Venus shines by reflecting light from the Sun, then the full set of phases is 
  impossible in the Ptolemaic model. 

a. Venus was known to always be in the vicinity of the Sun, never opposite the 
   Sun in in the night sky. 
b. In the Ptolemaic model, Venus is between Earth and the Sun, and it's epicycle 

              does not cross the Sun's orbit. 
 c.  Therefore, Venus could only exhibit the "new" and crescent phases. 

 
 



 
    3.  In the Copernican model, on the other hand, all phases are expected. 

  a.  Full and gibbous Venus would be seen when Venus is more distant than the 
    Sun. 

.            b. Venus would then also appear smaller than during the crescent phase, as 
observed. 

  
   .      4.  Galileo's observations of Venus where therefore a fatal blow to the Ptolemaic 

   model. 
    5.  Another of Galileo's major discoveries is that four bright moons orbit Jupiter. 

  a. This showed that some heavenly bodies orbit other objects; Earth is not 
              necessarily at the center. 
.            b. Moreover, since Jupiter was clearly moving, and it's moons were not left 

   behind or flying off, Earth might be moving as well. 

         6.  Galileo also made the following observations. 
 a. The Moon has craters, mountains, and valleys, as well as "seas" (maria). 

              b. The Sun has sunspots, which were considered "blemishes." 
              c. Saturn has a complex shape (but he could not discern the rings). 
              d. The Milky Way consists of a bunch of faint stars. 

        7.  The Roman Catholic church was quite upset with Galileo's assertions that the     

.            Copernican model represents physical reality; he challenged the long-held belief   

.            in a "perfect", Earth-centered universe.  Apparently, the Church also objected to 

.            his belief that matter consists of atoms. 

a. The Inquisition sentenced Galileo to perpetual house arrest for the         

remainder of his life. 

b. This had an important consequence; he devoted his time to the            
experimental study of the motions of falling bodies.  Most of the principle in 
Newton's laws of motion are bases on experimental facts determined by Galileo. 

c.   An important discovery made by Galileo is that objects of different mass    

accelerate at the same rate as they fall.  Thus, a wooden ball and a much heavier 

lead ball dropped simultaneously also hit the ground simultaneously.  

d.   One must neglect air resistance, of course; the experiment doesn’t work with a 

hammer and a feather in air.  However, it has been conducted dramatically on the 



Moon (which lacks and atmosphere), as well as in vacuum chambers on Earth. 

     8. Pope John II informally pardoned Galileo in 1992, acknowledging that the Inquisition’s 
       Condemnation of Galileo had been too harsh. 
  C.  During the last 20 years of the 16th century, the Danish nobleman and astronomer Tycho 
     Brahe used large instruments (but not telescopes) to measure the positions of Mars and       
.     other planets with unprecedented accuracy. 

1. At the age of 14, he had decided to devote his life to astronomical observational after 
seeing a predicted eclipse of the Sun. 
a. He discovered a bright supernova in 1572, and showed that it is part of the “sphere 

of fixed stars”, which is therefore not immutable. 
b. Most of his observations of planetary positions were conducted at his observatory 

Uraniborg on the island of Hveen. 
2. In 1599, two year after losing his financial support in Denmark, he moved to Prague at 

the invitation of the Holy Roman Emperor, Rudolph II. 
a. A mathematically inclined assistant, Johannes Kepler, came to analyze the data. 

Kepler had previously tried and failed to explain the regularity of planetary orbits in 
terms of a nested sequence of the five “regular solids”, which consist of equal sides 
(the pyramid, cube, octahedron, dodecahedron, and icosahedron). 

b. Tycho died in 1601, after Kepler had been with him for less than a year. 
c. Despite resistance from Tycho’s relatives, Kepler gained access to Tycho’s data, 

analysis of which led to three important revisions to the Copernican model. 
d. The first two of Kepler’s laws were published in 1609, and the third in 1618. 
e. The laws are buried in Kepler’s long, Baroque discourse on music and harmonics, 

but Isaac Newton read this and was able to state them succinctly. 
3. Kepler’s first law states that the orbits of planets are ellipses, not perfect circles, with 

the Sun at one focus of the ellipse (and nothing at the other focus). 
a. An ellipse is one type of conic section, produced by cutting the top off a hollow cone 

with a plane that is not perpendicular to the cone’s axis. 

 
b. Equivalently, an ellipse is a set of points having the following property; the sum of 

the distances from any two foci (fixed points), a + b, is a constant. 
 

c. The major and minor axes of an ellipse are the lengths of the longest and shortest 
axes, respectively.  Half these lengths are the semimajor and semiminor axes.  
The semimajor axis is close to the average distance between a planet and the Sun. 



 
d. The eccentricity of an ellipse is the distance between the foci divided by it’s major 

axis. 
i) Ellipses having the same major axis can have different eccentricities; just 

change the distance between the foci, keeping the sum a+b fixed. 
ii) If the two foci merge into one, the ellipse has zero eccentricity; it is a circle. 

e. One reason Tycho’s accurate observations were crucial is that slightly off-center 
circles (as in the Copernican system) resemble the mildly eccentric orbits of most 
planets. 

4. Kepler’s second law states that a line joining the Sun and a planet sweep[s out equal 
areas in equal times. 
a. When a planet is close to the Sun, it moves faster than when it is far from the Sun; 

otherwise, the area swept out in a given time interval will be too small. 
b. An extreme example of this is the highly eccentric orbits of many comets; they spend 

very little time near the Sun. 
5. Kepler’s third law states that the square of a planet’s orbital period is proportional to the 

cube of it’s semimajor axis (or average distance from the Sun). 
a. In mathematical form, this is P2=kR3, where P is the orbital period, R is the 

semimajor axis, and k is a constant (the same for all planets). 

 
b. The more distant a planet from the Sun, the longer it takes to complete an orbit. 
c. Kepler was very pleased with this third law, which he called the “harmonic law”.  

He had been incessantly searching for musical harmonics, and this law suggested an 



almost musical relationship between orbital periods and sizes. 
6. When discussing planets in our Solar System, it is sometimes convenient to use units 

based on Earth’s orbit. 
a. We can write Pp2 =k Rp2, where the subscript “p” means that we are referring to a 

given planet. 
b. Similarly, we can write Pe2 = kRe3, where the subscipts “e” means that we are 

referring to the Earth. 
c. Dividing one equation by the other, we see that the constant k cancels out:  

(Pp/Pe)2 = (Rp/Re)3. 
d. If we now adopt units of years for Pp and A.U. for Re, we have Pp

2 = Rp
3, since Pe = 1 

year and Re = 1 A.U. 
e. For example, if we know that the orbital period of Mars is 1.88 years (i.e., Pp = 1.88 in 

these units), then 1.882 = 3.53 = Rp3, so the semimajor axis of Mars’s orbit is the cube 
root of 3.53, or 1.52 (i.e., Rp = 1.52 A.U.). 

f. Note that for nearly circular orbits, the semimajor axis is simply the orbital radius. 
7. Kepler’s three laws are purely empirical; Kepler had no physical explanation for their 

origin.  Nevertheless, they were a major step in the development of astronomy. 
8. Kepler’s laws apply to any orbiting systems, not just the planets revolving about the Sun. 

a. For example, if we know that a satellite orbiting just above Earth’s atmosphere (say, 
at an altitude of 250 km) has a period of about 90 minutes (1.5 hours), we can 
calculate the orbital radius R of a satellite whose period is 24 hours. 

b. The distance of the nearby satellite from the Earth’s center is about 6630 km. 
c. Thus, we have (24/1.5)2 = (R/6630 km)3 
d. Solving, we find R = 42,100 km, the radius of the distant satellite’s orbit. 
e. Since Earth’s radius is about 6380 km, the satellite is approx. 35,700 km above the 

Earth’s surface. 
f. With a period of 24 hours, such satellites remain above a given point on Earth.  

They are called geostationary satellites, and have many uses (e.g. 
telecommunications). 

D.  Isaac Newton, born in 1642 (the year of Galileo’s death), derived Kepler’s laws mathematically 
from fundamental physical principles.  To better appreciate this, we examine some of the 
contributions of this incredible scientist. 
      1.  As mentioned earlier, Newton determined the “white light” consists of all colors of the 
         rainbow, and he invented the reflecting telescope. 
      2.  Among his even greater achievements were the development of the laws of motion,  
         the law of universal gravitation, and the body of mathematics known as calculus. 
      3.  Newton was reluctant to write up and publish his ideas.  His good friend Edmund 
         Halley (of Comet Halley fame) persuaded him to do so, and the result was a 
         monumental book known as The Principia (1687). 
      4.  Newton’s three laws of motion, developed largely from an analysis of Galileo’s data 
         on falling bodies, are as follows. 

a.  A body continues to be at rest, or in motion in a straight line with constant speed, 
unless a force acts on it. 
i) In particular, a planet doesn’t need any force to keep it going. 

b.  When a force acts on a body, it accelerates the body in the direction of the force, at  
a rate that is proportional to the strength of the force and inversely proportional to 
the mass of the body. (F = ma) 
i)  Note that velocity refers to both speed and direction, and acceleration is 

the rate at which velocity changes—speed or direction (or both). 
ii)  Pulling on a planet from the side changes the direction of motion.  This is 



how the gravitational force of the Sun keeps a planet curving around in it’s 
orbit. 

iii) A large mass is accelerated less than a small mass, for a given force. 
c.  When two bodies interact, they exert equal forces on each other, in opposite 

directions. 
i) For every action, there is an equal and opposite reaction. 
ii) A force always comes in pairs, and act in opposite directions. 
iii) When you jump off a chair and the Earth’s force of gravity brings you down 

again, you exert just as strong a force on the Earth as it does on you.  It’s 
the mass dependence in the second law that makes the difference; that 
force accelerates the enormously massive Earth far less than it accelerates 
you.  

iv) The Earth and Moon exert equal forces on each other, but the Moon gets 
much more acceleration because it is only 1/80 as massive as Earth.  
(The Earth is accelerated, though, and it follows a little monthly orbit 1/80 
as large as that of the Moon). 

E.  Newton’s law of universal gravitation is also of fundamental importance. 
      1.  According to legend, an apple fell on or near Newton, and he guessed that qualitatively 
         the same force acts upon the Moon, making it fall toward the Earth. This is the Earth’s  
         gravitational force. 

a.  It was sensible to suppose that all bits of matter contribute to the gravitational  
force exerted by an object; hence, the Earth’s gravitational force on the apple of  
mass m is probably proportional to Earth’s total mass M. 

b.  Conversely, the gravitational force exerted on the Earth by the apple of mass m is  
probably proportional to M. 

c.  Since the forces are equal in strength, they must depend on the product of the two  
Masses: Mm. 

d.  This is also consistent with Galeleo’s result that the acceleration of a falling body 
such as an apple is independent of it’s mass m; Since F=ma, we see that m cancels 
out if the Earth’s gravitational force on the apple is proportional to Mm.  As 
expected, the acceleration does depend on the Earth’s mass M. 

e.  If the Earth’s gravitational force weakened with distance like light spreading out 
from a candle, then it’s strength would decrease in proportion to the inverse square 
of distance, 1/d2. This was perhaps a guess, but it was reasonable, and it led to 
agreement with observations. 

f.  Overall, then, one can write the gravitational force exerted by the Earth of mass M 
on an apple of mass m as F is proportional to –Mm/d2, (the negative sign is a 
reminder that the force is attractive rather than repulsive). 

g.  Generalizing to two objects of masses m1 and m2, and writing the proportionality 
as an equality, we have F = -Gm1m2/d2, where G is now called Newton’s constant of 
gravitation. 

h.  The value of G is difficult to measure accurately because gravity is a weak force.  
The best current result is 6.673 x 10-8cm3/g-s2. 

      2.  At the Earth’s surface, the measured acceleration due to gravity is 9.80 m/s2. (This is  
         Equal to 32 ft/s2.) 

a.  Newton used his newly developed rules of calculus to show that the gravitational 
force of the Earth acts as though all of the Earth’s mass were concentrated in a 
point at it’s center. 

b.  Thus, the relevant distance at Earth’s surface is the radius, R, about 6400 km. 
c.  The Moon was known to be about 384,000 km from the Earth’s center, a distance 



60 times larger than R. 
d.  Hence, Newton calculated that the acceleration of the Moon should be (1/60)2 

equals 1/3600 times that at the Earth’s surface, or 0.27 cm/s2 = 0.0027 m/s2. 
e.  This is indeed the acceleration the Moon must have to maintain it’s orbit around 

the Earth. Newton’s law of gravitation therefore seemed to work, at least for the 
Moon. 

      3. Newton was also aware of the moons orbiting Jupiter, and of stars that orbit each other, 
        and of clusters of stars that appear to be bound together.  Thus, it seemed that the law 
        gravitation might apply universally. 
  F.  One might wonder why we say that the Moon is falling toward the Earth.  What makes it                 
.     orbit the Earth, instead of hitting? 
      1. Suppose there is no gravity.  According to Newton’s first law, launching the Moon 
        tangentially (i.e. perpendicular to the direction toward the Earth) results in motion 
        along a straight line at constant speed. 
      2. Now suppose gravity is present, but the Moon is released from rest.  According to  
        Newton’s second law, the Moon accelerates toward Earth due to the force of gravity. 
      3. Let us combine these motions, and examine them along small time steps. 
        a. We see that the Moon falls toward the Earth a little during the time it takes to travel  
           a short distance perpendicular to the Earth.  It’s new distance from the center of  
           the Earth remains unchanged. 
        b. During the next step, the same thing happens, but now the tangential motion  

(perpendicular to the direction toward the Earth) is in a slightly different absolute  
direction, due to gravity, but it never reaches Earth because the tangential motion 
keeps it away. 

        c.If we imagine numerous tiny steps of time, we get a smooth, curved oribit.  Newton 
          showed this rigorously by using calculus. 

d. Thus, the Moon rally does fall toward the Earth due to gravity, but it never reaches 
Earth because the tangential motion keeps it away. 

e. The Moon presumably acquired it’s tangential speed from the rotating disk of 
particles from which it formed. 

       4.  If Earth’s gravity were suddenly eliminated, the Moon would continue to move with  
          Constant velocity (speed and direction) along the direction tangent to the orbit at  
          at that instant. 
   G.  Newton’s reasoning is also illustrated by a drawing adapted from The Principia. 
       1.  Imagine standing on a high tower or mountain, and ignore air resistance. 
       2.  If you throw a rock straight out, initially parallel to the Earth’s surface, it will fall to  
          the ground some distance away from you due to gravity. 
       3.  If you throw it faster, it will fall to the ground a larger distance away. 
       4.  If you throw it very fast, it will eventually fall to the ground, but the distance will be 
          even larger than naively expected because the surface of the Earth partially curves  
          away from the rock’s trajectory. 
       5.  If you throw the rock sufficiently fast, the rock will follow a trajectory that exactly 
          matches the curvature of the Earth, so it will not hit the ground; instead, it will orbit 
          the Earth. 
       6.  The requisite speed is about 8 km/s, somewhat lower than the escape speed form  
          The Earth (11 km/s). 
       7.  The orbital period close to the Earth’s surface is about 90 minutes.  This is the  
          Period of the Hubble Space Telescope, for example. 
    H.  Using his laws of motion and universal gravitation, Newton was able to derive and  
        generalize Kepler’s laws, a stunning achievement. 



1. Kepler’s laws apply to any objects attracted by gravity to any other objects; they are 
not limited to planetary orbits around the Sun. 
a. For example, they apply to the moons orbiting Jupiter. 
b. Kepler’s third law, especially, will be encountered numerous times in this course. 

2. The trajectories are conic sections, not limited only to ellipses. 
a. If an object is gravitationally bound to another object, the orbit is an ellipse (the 

curve formed when a plane intersects a hollow cone at an angle less steep than 
the side of the cone). 

b. If an object is unbound, the orbit is a hyperbola (the curve formed when a plane 
intersects a hollow cone at an angle steeper than the side of the cone). 

c. If an object is just barely unbound, it’s orbit is a parabola (the curve formed when 
a plane intersects a hollow cone at an angle equal to the side of the cone). 

3. The full version of Kepler’s third law is actually P2={4π2/[G(m1 + m2)]}R3, where m1 is 
the mass of the Sun, then m2 is the mass of the planet. 
a. Note that the “constant” in Kepler’s version of the third law therefore depends on 

m2, the mass of the planet under consideration; it is not really a constant. 
b. However, since the mass of each planet in the Solar System is much smaller than 

the Sun’s mass (Jupiter, with 0.001 times the Sun’s mass, is by far the largest),the 
combination 4π2/[G(m1 + m2)} is nearly constant for all planets. 

c. Tycho’s observations were not sufficiently accurate for Kepler to have noticed 
this slight dependence of the “constant” on the planet’s mass. 

I.  If the mass m2 is negligible relative to m1, we can ignore m2 in the sum (m1+m2). 
1. The generalized version of Kepler’s third law then becomes P2 = [4π2/(Gm1)}R3,  

where m1 is the mass of the dominant object. 
a. If P and R of the small object (2) are measured, one can solve for m1. 
b. For example, we can use this method to determine the Sun’s mass. 

i)   Assume the Earth’s mass is negligible, and use the known values of P 
(1year) and R (1 A.U.) for the Earth. 

ii)   Being careful to properly convert units, we find that the mass of the Sun is 
m1=2 X 1033 grams. 

iii)   This is indeed far larger than the mass of the Earth (m2 = 6 X 1027 grams), 
thereby justifying the assumption that m2 is negligible. 

c. Similarly, one can derive the mass of Jupiter relative to Earth by measuring the 
orbital speeds and distances of a few of it’s bright moons. 

2. Another application of this is to determine the orbital speeds of different planets. 
a. For any planet, P2 = [4π2/Gm1)]R3. 
b. If the planet’s orbit is circular (roughly true), then the circumference of the orbit 

(2πR) must equal the planet’s speed multiplied by the period: 2πR = vP.  This is 
just an application of distance = speed x time, which is true for constant speed. 

c. Thus, P = (2πR)/v. 
d. Substituting this into equation: P2 = [4π2/Gm1)]R3, and rearranging, we find that 

m1 = v2R/G. We will see this again in our studies of galaxies. 
e. Equivalently, v = (Gm1/R)½, so we see that v is proportional to (1/R)½. 
f.  The speed of a planet is inversely proportional to the square root of it’s semimajor 

axis ---i.e., distant planets move more slowly than those near the Sun. 
g. This relationship is characteristic of systems in which a large central mass 

dominates over the masses of orbiting particles.  
h. Later, we will compare this relationship with that found for rotating galaxies. 

 
 



     J.  Questions: 
        1.  Describe the heliocentric model proposed by Copernicus, and show how it explains  
           the retrograde motion of planets. 
 
 
 
 
 
 
 

3. Discuss the most important observational evidence Galileo found for the 
heliocentric hypothesis.  

4. Summarize other key discoveries made by Galileo. 
 
 
 

5. State Kepler’s three laws of planetary motion. 
 
 
 
 
 
 

6. Explain how Kepler’s second law implies that a comet on a highly eccentric orbit  
spends very little time near the Sun. 
 
 
 
 
 
 

7. Calculate the average distance of a planet from the Sun, given the planet’s orbit  
period as 1.88 years. 
 
 
 

8. Examining each of Galileo’s telescopic discoveries separately, did they tend to  
support, oppose, or be irrelevant to the heliocentric hypothesis? 

    
9. If planetary orbits can be reasonably approximated as circles centered on the Sun, can 

you use Kepler’s third law to derive an equation relating the orbital speeds and 
distances of planets? 

 
 
 
 

10. What do you think the response of the Pythagoreans would have been to Kepler’s and 
Galileo’s work? 

 
 



11.  State Newton’s three laws of motion and give an example of each. 
 
 
 
    
 
 
 
 
 

12. Describe Newton’s law of universal gravitation, and summarize the reasoning used by 
Newton to deduce it. 

13. Discuss the modifications Newton made to Kepler’s three laws of planetary motion. 
 
 
 
 
 
 
 
 

14. Explain why Kepler did not notice that his third law of planetary motion actually does 
depend on the mass of the planet under consideration. 

 
 
 
 
 
 
 

15. Calculate the mass of the Sun from the orbital period of 1.88 years and distance of 1.5 
A.U. of a planet. 

 
 
 
 
 
 

16. Explain how we can say that the Moon is falling toward the Earth, when it clearly 
never reaches Earth. 

 
 
 
 
 
 
 
 

17. Why does a satellite speed up as it spirals toward the Earth due to friction with the 
outer atmosphere? (Naively, it seems that the friction should cause it to slow down.) 



 
 
 


